Process Issues

Dr. Alfred L. Broz FAA National Resource Specialist Chief Scientist & Technical Advisor Nondestructive Evaluation

Process Issues

What is the Process?
FPI Process Issues
Qualified Personnel

What is the Process?

Fluorescent penetrant inspection is a nondestructive <u>PROCESS</u> that uses suitable liquids that penetrate discontinuities open to the surface of solid, nonporous materials and, after appropriate treatment, indicate the presence of discontinuities by emitting visible light when illuminated by black light radiation.

FPI is an <u>AREA</u> inspection tool.

Patented October 14, 1941

#2,259,400

By R. C. Switzer

Exclusive license to

Magnaflux

February 1942

"ZYGLO"

July 1942

Early Lesson, (1942)

Many variables present
Consistent inspection results required consistent control of the process

Automation efforts in place early!

Basic Steps

- Preclean
- Apply penetrant
- Remove excess penetrant
- Apply developer
- Examine under black light
- Post clean

Prepare surface

Remove excess penetrant

Fluorescence

Advantages of FPI

Sensitive to small cracks and defects

- Inspection performed rapidly and at low cost
- Inspects complex shapes, large areas, many material types

 Indications produced directly on surface of the part providing a visual image of the discontinuity

Limitations of FPI

- Requires a nonporous material
- Paint and other coatings can adversely affect sensitivity
- Post cleaning is necessary
- Only detects surface breaking defects
- Sensitivity of method depends on the process chosen--postemulsifiable method is the most sensitive

Limitations of FPI (Cont.)

- Surface must be accessible to inspector or visual aids
- Surface finish and roughness can interfere with test sensitivity

90 - 95

Simple Geometry

Around 0.2" Long and 0.1" Deep

Mini-Maxi

Process

Control

Temperatures
Pressures
Times

Minimum 20 Minutes

If Exceeds 2 Hours, Repeat

Pre-Rinse

Maximum on one area -- 90 seconds water temperature 50 - 100°F Maximum water pressure 40 psi Filtered shop air oil-water 25 psi Suction device. OK Under UV

Emulsifier

• Least minimal time for acceptable background Not to exceed 2 minutes • Spray or dip application Concentration important • If immersion - mild agitation • Under UV

Post Rinse

- Immersion or spray
- Water temperature 50 to 100°F
- Maximum water pressure 40 psi
- If hydro-air, max. 25 psi added air spray distance less than 12 inches
- Time not to exceed 90 seconds
- Remove water, reposition, drain suction
- Filtered shop-air (oil-water) 25 psi

Maximum temperature 160°F Minimum time to dry parts

Developer

Usually dry
NAWD when specified
Minimum 10 minutes
Avoid buildup
Inspect within one hour or reprocess

Inspect

• Usually 100% (?) • Dark Area (2 ft. - candles maximum) • Blacklight • Rebleed! • Index/Mark Search Pattern

Post Clean

Excellent Free Video Available From:

Sherwin, Inc. 5530 Borwick Ave. South Gate, CA 90280

5628616324Phone5629238370Fax